
So�ware Development (cs2500)

Lecture 25: Inheritance (Continued)

M.R.C. van Dongen

December 1, 2010

Contents
1 Introduction 1

2 Last Monday 2

3 Transitivity 2

4 Is-A andHas-A 4
4.1 A Test for Inheritance . 4

4.2 An Association Test . 6

5 Inheritance Control 7
5.1 Making the Class Final . 7

5.2 Simulating Inheritance . 8

5.3 Making the Method Final . 9

6 MethodOverloading 9
6.1 Method Signatures . 9

6.2 Method Overloading . 10

6.3 Overriding/Overloading . 11

7 For Friday 11

1 Introduction
�is lecture continues our study of inheritance. Speci�cally, we shall:

• Exploit the transitivity of inheritance to maximise code reuse, save coding e�ort, and increase

program maintenance.

1

• Use the is-a test to cross-check our inheritance hierarchy.

• Use the has-a test to determine when object reference attributes are required.

• Learn how to control inheritance.

• Study the di�erence between overriding and overloading.

�is lecture is based on [Sierra and Bates, 2004, Chapter 7] and parts of [Lewis and Lo�us, 2009,

Chapter 9].

2 Last Monday
Last Monday we studied inheritance. Inheritance increases the ability to reuse implementation e�ort.

• General-purpose code is put in a superclass.

• More speci�c code is put in subclasses.

• �e superclass de�nes more general behaviour.

• �e subclasses de�nes more speci�c behaviour. A subclass can inherit behaviour from its superclass.

It can override the general behaviour with more speci�c behaviour. Finally, a subclass can provide

additional behaviour.

Inheritance separates class-speci�c from more general code. �is allows us to make local changes in

a subclass without a�ecting code in other classes. Inheritance also de�nes a common protocol. If the

superclass de�nes a method with a given signature then method calls with this signature can be used in

the superclass and in any of its subclasses.

3 Transitivity
In this section we shall study transitivity and how it relates to inheritance.

Let ⊕ be a binary relation. We write a ⊕ b if and only if a ⊕ b is true. �e following are some

examples.

• If⊕ is< then 1⊕ 3 is true.

• If⊕ is= then 1⊕ 3 is false.

• If⊕ is 6= then 1⊕ 3 is true.

• If⊕ is ‘is a parent of ’ then Homer⊕ Bart is true.

We say ‘a⊕ b ’ if a⊕ b is true. We say ‘not a⊕ b ’ if a⊕ b is false.

Relation⊕ is called commutative if for all a and b the following holds:

2

• a⊕ b is true if and only if b ⊕ a is true.

Both= and 6= are commutative. Most binary relations are not commutative: 1< 2 but not 2< 1. �e ‘is

a parent of ’ relation is also not commutative. For example Homer is a parent of Bart is true but Bart is a

parent of Homer is not true. �e integer divisability relation is also not commutative: 1 divides 2 but not

vice versa.

Relation⊕ is called transitive if for all a, b , and c the following holds:

• If a⊕ b is true; and

• If b ⊕ c is also true;

• �en a⊕ c is also true.

Both< and≥ are transitive. �e reachability relation in graphs is transative.
1

For example, if node a can

be reached from node b and if node b can be reached from node c then node a can be reached from

node c . Since this is true for all a, b , and c it follows that reachability is transative. �e relation ‘is an

ancestor of ’ is also transitive: Abraham is an ancestor of Homer and Homer is an ancestor of Bart. �erefore

Abraham is an ancestor of Bart. Most binary relations are not transitive: 1 6= 2 and 2 6= 1 but not 1 6= 1.

�e ‘is a parent of ’ relationship is also not transitive. For example, ‘Abraham is a parent of Homer’, and

‘Homer is a parent of Lisa’, but not ‘Abraham is a parent of Lisa’.

�e subclass and superclass relationships are both transitive. �is is best seen by considering the class

extension relationship. If class A extends class B then A is more speci�c than B .

• A Dog is more speci�c than a Canine; and

• A Canine is more speci�c than an Animal.

• �erefore, a Dog is more speci�c than an Animal.

We can also use the ‘is more general than’ relationship:

• An Animal is more general than a Canine; and

• A Canine is more general than a Dog.

• �erefore, an Animal is more general than a Dog.

A method may be overridden only once per class. However it may be overridden in subclasses of that

class. And overridden in subclasses of that subclasses. And so on. When a method is called, the Java
virtual machine will always call the method using the lowest method de�nition in the class hierarchy. By

exploiting transitivity you can maximise code reuse. You should try and avoid overriding a given method

in all classes at the botom of the class hierarchy. Instead you should try and override method de�nitions as

high up the inheritance hierarchy as possible. By doing this, the overridden method can be used anywhere

below in the hierarchy. E�ectively, this maximises code reuse,saves coding e�ort, and increases program

maintenance.

1
Here we say that a node a in a graph is reachable from a node b in a graph if we can reach a from b by following a

sequence of edges in the graph.

3

Cat

makeNoise()

roam()

Tiger

makeNoise()

roam()

Lion

makeNoise()

roam()

Animal

eat()

makeNoise()

roam()

Figure 1: Larry’s class design.

Figure 1 depicts a part of Larry’s class design. �is design does not take into account that all Animals

at the bottom of this class diagram are Feline. In Larry’s class design, there is no structure: there are two

class levels and all overrides are at the lowest level. In total there are 6 overrides: 3 for makeNoise() and

3 for roam().

Figures 2 and 3 look more like Brad’s class design. �ese designs have an additional intermediate class

level which sits between the Animal class and the subclasses of the Filine class.

�e design which is depicted in Figure 2 has all overrides at the lowest level. It requires 3 di�erent

overrides for makeNoise() and 3 identical overrides for the method roam().

In the design which is depicted in Figure 3 the overrides for the method roam() are factored out and

moved as high up the class hierarchy as possible. �is class design also requires 3 overrides for makeNoise(
) but only one override for roam(). For this design it results in an overall saving of two overriding

de�nitions.

4 �e Is-A andHas-A Tests

4.1 A Test for Inheritance
Designing a class hierarchy is an art, more than a science. It is almost never possible to get things right

from the start. For example, which classes should you use? Even if you have the classes, then it may not

always be clear which classes to put at the top levels, which classes to put at the intermediate levels, and

which classes to put at the bottom levels of the class hierarchy.

�e is-a test provides some help to catch early mistakes. �e test is designed to check when a subclass

relationship is correct. �e following describes how it works. Let A and B be two classes (nouns). If ‘every

4

Cat

makeNoise()

roam()

Tiger

makeNoise()

roam()

Lion

makeNoise()

roam()

Feline

Animal

eat()

makeNoise()

roam()

Figure 2: Class design with intermediate class and low overrides.

A is-a B ’ is correct (at the noun level), then making class A a subclass of B is correct.

�e following are some examples.

• Every Dog is-an Animal. �is is true so Dog can be a subclass of Animal.

• Every Animal is-a Dog. �is isn’t true so Animal cannot be a subclass of Dog.

• Every Apple is-a Pear. �is isn’t true so Apple cannot be a subclass of Pear.

• Every Pear is-an Apple. �is also isn’t true so Pear also cannot be a subclass of Apple.

• Every Cat is-a Feline. �is is true so Cat can be a subclass of Feline.

• Every Feline is-a Cat. �is isn’t true so Feline cannot be a subclass of Cat.

�e “extends test” is not so robust:

• Cat extends Feline. �is is true so Cat can be a subclass of Feline.

• Feline extends Cat. �is isn’t true so Feline cannot be a subclass of Cat.

5

Cat

makeNoise()

Tiger

makeNoise()

Lion

makeNoise()

Feline

roam()

Animal

eat()

makeNoise()

roam()

Figure 3: Class design with intermediate class and high overrides.

• Conservatory (Sunroom) extends House. �is is true but Conservatory cannot be a subclass of

House. For example, let’s assume that Conservatory extends House. �en Conservatory should

inherit all House methods and Conservatory.ringDoorBell() does not make sense, and Conser-
vatory.lightFireplace() also does not make sense.

4.2 An Association Test
�e previous example demonstrates that even if it makes sense for a class to use another class, it may

not always make sense to make the other class a subclass. �e House uses/requires/has access to the

Conservatory. We’ve seen that Conservatory cannot extend House. Still it makes perfectly sense for the

House class to have a Conservatory attribute.

public class House {
private Bell doorBell;
private Window[] groundfloorWindows;
private Window[] firstFloorWindows;
private Conservatory conservatory;
…

}

Java

�e following is another example. MouseCursor cannot be a subclass of Window. Still it makes perfectly

6

sense for the Window class to have a MouseCursor attribute.

public class Window {
private Position currentPosition;
private Point lowerLeft;
private Point upperRight;
private MouseCursor cursor;
…

}

Java

If a class A has a class-B attribute then class A uses B . For example:

• Window uses a MouseCursor.

• House uses a Conservatory.

�e has-a test determines when a class uses another class. If ‘Ahas-a B ’ then Acan have a class-B attribute.

�e following are some examples.

• Every House has-a Conservatory (possibly null). �is is true so House should have a Conservatory
attribute.

• Every Window has-a MouseCursor. �is is true so Window should have a MouseCursor attribute.

• Every Animal has-a Cat. �is isn’t true so Animal shouldn’t have a Cat attribute.

• Every Cat has-an Animal. �is also isn’t true so Cat shouldn’t have an Animal attribute.

5 Controlling Inheritance
In Java a subclass inherits all public methods and attributes. �ere are some techniques to control

inheritance and method overrides:

• Make the superclass final. Making a class final ensures the class cannot be extended.

• Make a method final. Making a method final ensures the method cannot be overridden.

5.1 Making the Class Final
�e following demonstrates how to make a class final: you simply add the final keyword before the

class keyword. By making the class final it becomes impossible to extend it.

7

public final class Europe {
// You may not extend this class.
…
public void countdown() {

System.out.println("We’re leaving together");
System.out.println("But still it’s farewell");
System.out.println("And maybe we’ll come back,");
System.out.println("To earth who can tell?");
…

}
}

Java

Why would you ever want to make a class final? �e answer is related to security and maintenance.

In both cases, the underlying reason is that inheritance violates encapsulation. By allowing method

overrides, you allow client classes to change the intended method behaviour. In theory this is almost

as bad as providing the client classes direct access to superclass attributes. �is time methods — not

attributes — are exposed to modi�cation.

Security: �e �rst reason for making a class final is security: you want to make sure the class is used

as it is supposed to be used. If you don’t make the class final, the class can be extended and its

non-final methods can be overridden. If methods are overridden they can be made behave the

wrong way. If methods start to behave incorrectly it may become impossible to enforce certain

invariants. For example, a String should behave as as String. In particular this means that the

length of the string should be equal to the number of characters in the String. If the length()
method is overridden and returns the wrong length then this may pose problems for a method

that displays the String.

Maintenance: A second reason for not allowing class extensions is related to maintenance. Here it is

important to avoid client classes which start to rely on di�erent behaviour. �is subclass behaviour

may break if a superclass implementation is upgraded.

5.2 Simulating Inheritance
In this section we shall study a technique which lets us simulate inheritance. �e key to the technique is

class composition.

Class A is composed of class B if

• A uses a class B attribute.

• Class A objects own the attribute: there should be only one object that uses the attribute: aliases

should not be allowed.

• Class A controls object B : no other object can change object B .

8

Composition lets you safely simulate inheritance.

// class Animal is now final.
public class Dog {

// Dog owns Animal object reference.
private Animal animal = new Animal();
…
// Default eating behaviour.
public void eat() { animal.eat(); }
// Special roaming behaviour.
public void roam() { … }

}

Java

5.3 Making theMethod Final
�e following demonstrates how to make a method final: you simply add the final keyword before the

method’s return type. By making the method final it becomes impossible to override it. In the following

example, the class Europe may be extended. Subclasses may override the method playOtherDreadful-
Tune(), but they may not override the method countdown() because it’s final.

public class Europe {
// You may not override this method.
public final void countdown() {

System.out.println("We’re leaving together");
System.out.println("But still it’s farewell");
System.out.println("And maybe we’ll come back,");
System.out.println("To earth who can tell?");
…

}
// You may override this method.
public void playOtherDreadfulTune() { … }

}

Java

6 MethodOverloading

6.1 Method Signatures
Formally, the signature of a method is the list consisting of the method’s argument types. �e signature

does not include the method visibility. �e signature does not include the return type.

�e following is an example with three method de�nitions. �e �rst method has signature ‘int, int’,

the �rst method has signature ‘int, int, int’, and the last method has signature ‘double, double’.

9

…

private int sumTwo(int a, int b) {
return a + b;

}
public int sumThree(int a, int b, int c) {

return sumTwo(a, sumTwo(b, c));
}
public double sumFour(double a, double b) {

return a + b;
}

Java

�e order of the types in the argument list matters, so the signatures of the following methods are

di�erent. �e �rst signature is ‘int, char’ and the second signature is ‘char, int’.

…

private void exampleA(int a, char b) {
〈stuff〉

}

private void exampleB(char a, int b) {
〈stuff〉

}

Java

6.2 MethodOverloading
Java allows several signatures for methods with the same name. Two methods are said to overload each

other if: they have the same name, and they have di�erent signatures. When two methods overload each

other, “the” method — the name — is said to be overloaded.

�e following is an example with three method de�nitions. Each of the de�ned methods is called

‘sum’ but their signatures are di�erent. Because the three methods have the same name but di�erent

signatures, the method(s) sum are overloaded.

…

private int sum(int a, int b) {
return a + b;

}
public int sum(int a, int b, int c) {

return sum(a, sum(b, c));
}
public double sum(double a, double b) {

return a + b;
}

Java

10

6.3 Overriding versus Overloading
It is a common mistake to confuse overriding with overloading.

Overriding: Overriding means rede�ning an existing method of a superclass.

Overloading: Overloading means de�ning a new method with a di�erent signature.

�e following is an example.

public class Dog extends Animal {
…

// new method
public void eatPedigree() {

// 〈eat one portion of branded dog food〉
}

// Overloading.
public void eatPedigree(int portions) {

// 〈eat several portions of branded dog food〉
while (portions –) {

eatPedigree();
}

}

// Overriding
@Override
public void roam() { … }

// Overloading.
public void roam(Dog friend) {

roam();
friend.roam();

}
}

Java

7 For Friday
For Friday: study the notes, study Chapter 7, Pages 177–191, and carry out the exercises on Pages 192

and 193.

11

References
[Lewis and Lo�us, 2009] John Lewis and William Lo�us. Java So�ware Solutions Foundations of

Program Design. Pearson International, 2009.

[Sierra and Bates, 2004] Kathy Sierra and Bert Bates. Head First Java. O’Reilly, 2004.

12

	Introduction
	Last Monday
	Transitivity
	Is-A and Has-A
	A Test for Inheritance
	An Association Test

	Inheritance Control
	Making the Class Final
	Simulating Inheritance
	Making the Method Final

	Method Overloading
	Method Signatures
	Method Overloading
	Overriding/Overloading

	For Friday

